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Abstract--In order to predict the strength of two-phase rocks in terms of the component volume fraction, the aspect 
ratio of the strong phase and the strength contrast between the strong and weak pb ases, a simple model is developed 
according to a fiber-loading theory modified for short-fiber composites. The analytical solution derived from elastic 
theory is found to hold, in good approximation, for rocks consisting of power-law viscous minerals. There is a good 
agreement between the predicted results and the experiments for two-phase aggregates: anhydrite-halite, calcitc- 
halite, Fe-Ag and clinopyroxene-plagioclase. The model is compared with several previous different models. 

INTRODUCTION 

BULK strength of composite rocks, in which a hard, 
relatively undeformable phase constitutes rigid in- 
clusions dispersed in a ductile soft phase matrix, is 
usually considered as identical in value with that of the 
pure weak matrix component. It is a common practice, 
using the above approach, to predict the flow strength of 
the crust and upper mantle by extrapolating the steady- 
state laboratory flow law of quartz-plagioclase and oli- 
vine to natural strain-rates and temperatures (e.g. Kirby 
1980, Carter & Tsenn 1987). However, because this 
approach does not take into consideration the strength- 
ening behavior of the composites related to the inter- 
action between hard phase and soft matrix, it underesti- 
mates the bulk flow stress even for rocks in which the 
weak phase is abundant with respect to the strong phase, 
and their strength contrast (strong/weak) is larger than 
10/1. 

In the scientific literature, numerous theoretical 
models have been developed to correlate strengthening 
mechanisms with microstructural characteristics of com- 
posites. These models are as follows. 

(1) Orowan strengthening effect 

If the second-phase particles are small enough to 
interact with single dislocations (i.e. grain size < several 
/~m), the stiff particles can increase the strength of the 
composite material (Kelley 1973). The stiff particles act 
as impenetrable barriers to dislocation motion and force 
gliding dislocations to bow-out and by-pass them follow- 
ing the so-called Orowan mechanism (Orowan 1948). 
However, for relatively large particle size and spacing, 
which is the geological case discussed here, Orowan- 
type hardening would be negligible (Kelley 1973, Wu & 
Lavernia 1992). 

(2) Strengthening due to high dislocation density 
generated in the matrix around the strong inclusions 

Differences in thermal expansivities between differ- 
ent phases can lead to the generation of dislocations 
(increase in dislocation density) and to the reduction of 
subgrain size during changes in temperature (Arsenault 
& Shi 1986, Arsenault 1991, Dunand & Mortensen 
1991). These microstructural changes may influence the 
material strength (Hirth & Tullis 1991, Ingrin et al. 
1991). 

(3) Strengthening due to chemical reaction 

Chemical reaction between phases may lead to 
strengthening or weakening of rocks during prograde or 
retrograde metamorphism (Brodie & Rutter 1985). 

(4) Strengthening due to fiber-loading effect of strong 
phase grains in a soft matrix 

The theory of fiber-loading was developed by Cox 
(1952) and has been used to interpret extension fracture 
boudinage (Lloyd etal. 1982, Masuda & Kuriyama 1988, 
Ji & Zhao 1993). The theory can be briefly outlined as: 
the harder phase carries a comparatively greater part of 
the stress, while the soft phase tends to take the greater 
part of the strain (with reference to the volume fraction 
ratio). 

While certainly not trivial, the effects of items (1)-(3) 
can, in principle, be treated with existing theory, and 
will not be considered further in this paper. Here, 
attention is focused on item (4), which has to date 
received little consideration by geologists but which will 
be shown to have a strong effect on the strength of rocks. 
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FIBER-LOADING THEORY FOR SHORT-FIBER 
COMPOSITES 

Most crust and mantle rocks consist of two or more 
phases with different mechanical properties. Relevant 
examples are granite, diabase or gabbro, amphibolite, 
gneisses ranging from felsic to mafic in composition, 
peridotite and impure limestone or quartzite. Rocks 
may be classified into two types depending on the shape 
of rigid minerals: (i) short-fiber composites in which 
inequant rigid mineral grains such as feldspar, amphi- 
bole, pyroxene or tourmaline are dispersed in a ductilely 
deforming matrix consisting of soft minerals; and (ii) 
particle composites in which sphere-shaped rigid miner- 
als are dispersed in a ductilely deforming, softer matrix. 
Relevant examples are garnet-bearing diatexitic mylon- 
ite and garnet-lherzolite. 

To a first approximation, the microstructure of a two- 
phase rock may be represented by a hard cylindrical 
fiber with length l and diameter 2r with long axis parallel 
to the x-axis, completely embedded in a continuous soft 
matrix (Fig. 1). The aspect ratio of the fiber, s = (l/2r), is 
greater than 1 for short-fiber composites and equal to 1 
for particle composites. We use the fiber-loading model 
developed by Cox (1952). He assumed that the matrix as 
a whole is strained homogeneously, but that the state of 
uniform stress and strain is locally perturbed by transfer 
of load to the fiber. If P is the load in the fiber at a 
distance x from the end, Cox (1952) assumed 

dP 
- H ( u -  v ) ,  (1) 

dx 

where u is the longitudinal displacement in the fiber and 
v is the corresponding displacement the matrix would 
undergo if the fiber was absent; H is a constant. 

In the regime of elastic deformation, according to 
Hooke's law, the load in the fiber is: 

E A  du P =  f f ~ ,  (2) 

where Ef is Young's modulus, and Ae is the area of 
cross-section of the fibre, that is, Af = ~r 2. 

Differentiating equation (1) and substituting equation 
(2) gives 

= H  P 
dx 2 E ~ -  e , (3) 

2r I Flb~i~ > X I 
x=O X=l 

Matrix 

Fig. 1. Schematic geometry of fiber-matrix composites (modified 
from Kelly & Macmillan 1986). 

where e -- (dv/dx) = constant. This differential equation 
is solved as 

P(x) = EfAfe + S! sinh fix + $2 cosh fix, (4) 

where St and $2 are constants, and according to Cox 
(1952) and Kelly & Macmillan (1986, pp. 261), 

{ 2~Gm_ ) '/2 
fl = \ EfAf ln R/r  ] " (5) 

where Gm is the shear modulus of the matrix, and R is 
half the average spacing between fibers. 

For long fibers, the model of Cox (1952) assumes no 
load transfer from the matrix to the end faces of the 
fiber, that is, P(0) = P(l) = 0. However, for short fibers, 
the load transfer at the ends cannot be ignored because 
the aspect ratio significantly affects stress magnitude and 
distribution in the fiber (Tyson & Davies 1965, Nardone 
& Prewo 1986). Therefore, we set the boundary con- 
ditions as: 

P(O) = P(I) = ~r~ai, (6) 

where ai is the stress acting on the fiber ends, a i = Eme 
(Nardone & Prewo 1986, Wu & Lavernia 1992, Zhao & 
Ji 1992), and Em is the Young's modulus of the matrix. 

Substituting equation (4) into equation (6), the distri- 
bution of tensile stress in the fiber is then: 

a f ( X ) = { ~ + ( l - - f f ~ f m )  cOsh [[3(l/2 - "] i (7) 

and the average stress in the fiber is 

ft  0 of (x)dx [Ef  ( _ E l l  tanh ~P]a., 
l = E m +  1 Em } lp J ' (8) 

where 

~p fll [ - 2 E m  )11/2 (9) 
= = s E l ( 1  + v ) I n  

and where Ff and v are the volume fraction of the fibers 
in the composite and Poisson's ratio of the matrix, 
respectively. 

The average stress on the composite is 

0 c = Ffof + Fm~ m 

= F f l  Ef ( 1 -  E f / t a n h  q~/o 

+ (1 - Ff)~m, (10) 

where Ff + Fm = 1. The average stress acting on the 
matrix, am, will be o i assuming no slip at the fiber-matrix 
interface (Nardone & Prewo 1986). Therefore, 

a-m ~m + 1-~--~ - F f + l .  (11) 

According to Nardone & Prewo (1986) and Taya & 
Arsenault (1987), the yield strength of the composite 
occurs when the matrix reaches its yield strength (Sin), 
that is, Om = Sm" This implies that the addition of fibers 
increases the strength of composite, but does not in- 
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Fig. 2. Stress-strain curves at imposed strain-rate and constant temperature. (a) Perfectly elastoplastic materials. (b) 
Power-law viscous materials. The indicated 6r-e points on the elastic-plastic stress-strain diagram (solid lines) may also be 
reached with an elastic model material (dashed lines). The corresponding elastic constants (E* and v*) can be evaluated for 

each a-e point, the total strain e being the sum of the elastic strain e~ and the plastic: strain %. 

crease the strength of matrix since the strengthening of 
the composite matrix by dislocation generation is 
ignored. Therefore, we obtain 

Sm S c -  O--mOC-- f f { ~ m +  1 E l  ( _ Ef]Em] tanh~p J~ ' / -  F f +  1, (12) 

where Sc is the yield strength of composite. 
Equation (12) was derived from elastic theory. In the 

following paragraphs, we will determine the applica- 
bility of the analytical elastic solutions when a composite 
rock undergoes plastic flow. 

(1) The elastic solution of equation (12) can be used 
to describe the flow strength of composite if the follow- 
ing two conditions are satisfied: (i) both the fiber and the 
matrix in the composite are perfectly elastoplastic 
materials (Obert & Duvall 1967), i.e. they are linear- 
elastic below the yield strain and are perfectly plastic 
without strain hardening or weakening above the yield 
strain (Fig. 2a); and (ii) the fiber and the matrix have 
similar yield strains at given temperature, pressure and 
strain-rate. An investigation of the scientific literature 
shows that the second approximation is formally correct 
(e.g. Paterson 1978, Jaeger & Cook 1979, Kirby & 
McCormick 1984, Poirier 1985). Under these con- 
ditions, E f / E  m is approximated to be equal to the ratio 
(~) of fiber flow strength to matrix flow strength. Then 
equation (12) can be written as 

- Ff ~ + ( l  - ~)  , .,1/2 Sm 
sly(1 +  )In (Ff)] 

- F f +  1, (13) 

where Sc and Sm become the flow strength or yield 
strength for the composite and the matrix, respectively. 

(2) Even if the fiber and the matrix are power-law 
materials, equation (12) may still stand when actual 
composite material which is elastically and plastically 
deformed to a certain point can be replaced by an elastic 
model material reaching the same point of stress and 
strain (Poech's approximation, Poech 1992) (Fig. 2b). In 

this case, however, E in equation (12) and v in equation 
(9) should be replaced by a secant Young's modulus 
(E*) and a corresponding Poisson ratio (v*), respec- 
tively. E* and v* are given: 

E* - - - -  (14) 
E 6e~'-6 p 

v* - vee + 0 .5% (15) 
E c + 6 p  

where o is the stress, ee and ep are the elastic and plastic 
strains, respectively (Fig. 2b). With the above approxi- 
mation, E ~ / E *  is also found to be equal to ~, where E~ 
and E*m are the secant Young's modulus for the fiber and 
the matrix, respectively. Thus we assume that equation 
(13) can be used to describe the flow strength of compo- 
site rocks consisting of power-law viscous phases. 

From equation (13), we can predict: (i) a strengthen- 
ing effect for a two-phase composite with increasing 
aspect ratio of the hard phase (Fig. 3a); (ii) a substantial 
increase in strength of the composite with increasing 
volume fraction of the hard phase (Figs. 3a & b); and 
(iii) effects of strength contrast (~) between the fiber and 
the matrix on strengthening of the composite (Fig. 3b). 
As shown in Fig. 3(b), for small aspect ratio (i.e. s = 1) 
there is a dramatic increase in the bulk strength of the 
particle composites when Ff -> 0.80, but this sharp rise at 
large Ff diminishes as the fiber aspect ratio, s, increases. 
When s -> 10, the relationship between S¢/Sm and Ff 
becomes linear (Fig. 3a). 

C O M P A R I S O N  W I T H  E X P E R I M E N T S  

At laboratory strain-rates (10-4-10 -6 s-1), most geo- 
logical materials undergo rather semi-brittle creep than 
perfect plastic deformation without change of volume. 
Thus, v* should be smaller than 0.5. We found that v* = 
0.25 led to the best agreement between the predicted 
results and experimental ones. 
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Fig. 3. SJSm (ratio of the composite strength to the matrix strength) 
as a function of Ff (fiber volume fraction), predicted by the fiber- 
loading model. (a) Effects of fiber aspect ratio (s) on So~Sin for a given 
(strength contrast between the two pure phases) of 10. (b) Influences 

of  ~ o n  Sc/Sm fo r  a g iven  s. 

ing, and then were deformed coaxially at confining 
pressures of 150, 200 and 250 MPa, temperatures of 20 
and 200°C, and a strain-rate of 10 -4 s -1 (Jordan 1988). 
At all experimental conditions, halite was soft and 
deformed by crystal plasticity while calcite was hard and 
semi-brittle. The strength contrast between calcite and 
halite increased with increasing confining pressure (Fig. 
5b). The strength vs Ff, and S d S  m v s  Ff plots are shown 
in the left and right columns of Fig. 5, respectively. 
Jordan's experimental results fit well the predicted Sc/S m 

- Ff relationship based on s = 2. Examination of the 
microstructural photographs in Jordan (1987) shows 
that the calcite grains in his samples had an average 
aspect ratio of about 2. 

Iron-silver aggregates (Le Hazif 1978) 

Le Hazif (1978) deformed pure Fe and pure Ag 
aggregates and sintered Fe-Ag aggregates containing 
phases of equal volume fractions at room temperature 
and pressure, and a strain-rate of 7 × 10 -5 s -~. Micro- 
structural observation shows that the Fe and Ag phases 
in the undeformed sintered aggregates are closely inter- 
connected and that the Fe phase is almost equigranular 
(i.e. s = 1). At a given strain of 10%, the strengths of the 
pure Fe and pure Ag aggregates, and the two-phase 
aggregate are 43, 19 and 23 kg mm-2, respectively (Fig. 
6a). Le Hazif's experimental results agree well with our 
model prediction for s = 1 (Fig. 6b). 

Diabase (Shelton & Tullis 1981) 

Anhydrite-halite aggregates (Price 1982) 

In order to test the model developed in the previous 
section, we have selected Price's (1982) experimental 
results for comparison. His samples were sintered 
anhydrite-halite aggregates with a varied anhydrite vol- 
ume fraction (0, 0.25, 0.50, 0.75, 1.00). The deformation 
experiments were performed at a temperature of 200°C 
and a strain-rate of 10 4 s- l .  At the experimental 
conditions, halite was deformed by intracrystalline plas- 
ticity and anhydrite by a combination of intracrystalline 
plasticity and microffacturation. Figures 4(a) & (b) 
show the sample strength at 10% axial strain as a 
function of anhydrite volume fraction (Ff) at confining 
pressures of 100 and 200 MPa, respectively. A dramatic 
increase in bulk strength occurs when Ff -> 0.80. 
Although information about the anhydrite aspect ratio 
(s) in the samples is not available from Price (1982), the 
ratio of the composite strength to the pure soft matrix 
strength (So~Sin) predicted by our model based on s = 1 is 
in good agreement with Price's experimental results 
(Fig. 4). 

Calcite-halite aggregates (Jordan 1987, 1988) 

Sets of calcite-halite aggregates with calcite contents 
varying from 0 to 100% were artificially made by sinter- 

Shelton & Tullis (1981) experimentally determined 
the power flow laws in axial compression for plagioclase, 
clinopyroxene and diabase (64% cpx, 36% pl). In the 
experimental conditions, clinopyroxene is stronger than 
plagioclase. Individual clinopyroxene grains in the dia- 
base are fairly equant (J. Tullis personal communi- 
cation). These flow laws are: 

= 1.18 x 106 s - lGPa-39o39 

-234 k J m ° l - l /  (16) 
+ exp RT J 

for plagioclase, 

= 9.95 x 1 0 8 s - l G P a - 2 6 o  2"6 

- 335 kJ_mol- 1/ 
+ exp RT / (1 7) 

for clinopyroxene and 

= 2.58 x 106 s - lGPa-34o  34 

( - 2 6 0 k J m o l  ') 
+ exp -- (18) 

R T  

for diabase. 

As shown in Fig. 7, the relative strength of diabase (Ff = 
0.64) with respect to plagioclase strength, calculated 
from flow law equations (:16)-(18) at 800 and 900°C and 
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Fig. 4. Results of experimental investigations on anhydrite-halite aggregates (composite strength, S~, vs the strong phase 
volume fraction, Ff, in the left column) compared with the model predictions based on s = 1 (in the right column)• Data from 
Price (1982). (a) Strengths for a given strain of 10% at a temperature of 200°C, a confining pressure of 100 MPa and a strain-rate 
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a strain-rate of 10 -6 s- ~, agrees very well with our model 
prediction for s = 1. 

In summary, the bulk strength of two-phase compo- 
sites predicted by the fiber-loading theory was found to 
be quite consistent with the experimentally observed 
strength for anhydrite-halite (Price 1982), calcite-halite 
(Jordan 1987, 1988), Fe-Ag (Le Hazif 1978) and 
clinopyroxene-plagioclase (Shelton & Tullis 1981) 
aggregates• The materials science literature does con- 
tain additional experimental studies on the bulk flow 
strengths of composites as functions of both volume 
fraction and aspect ratio of the strong phase (e.g. Arsen- 
ault 1991, Kim & Chou 1987, Taya & Arsenault 1989, 
Pachalis & Chou 1992, Wu & Lavernia 1992). However, 
it is not appropriate to compare the present model to 
these studies because the diameter of hard fibers or 
particulates is so small (< several/~m) that dislocation- 
related strengthening is important. In such cases both 
the fiber-loading effect and dislocation-related strength- 
ening should be taken into consideration (Wu & Laver- 
nia 1992). Therefore, further testing of the proposed 
model will require systematic studies on the experimen- 
tal deformation of synthetic bi-phase rocks with con- 
trolled volume fraction, aspect ratio of the rigid 
component and strength contrast between two com- 
ponent phases• 

COMPARISON WITH OTHER MODELS 

Comparison with Tharp (1983) model 

Tharp (1983) suggested that a two-phase rock, in 
which the stronger mineral constitutes a load-carrying 
framework and ~ >-10, could be modelled by analogy 
with porous powder metals. This so-called Tharp model 
predicts the following bulk strength of the aggregate 
(Sc): 

Sc _ ~[1 - k(1 - Ff)2/31, (19) 
Sm 

where ~ is the strength contrast between the two pure 
phases and k is a geometrical coefficient which depends 
on a number of factors such as the shape and config- 
uration of the weak phase, ~ and the deformation 
mechanism, and therefore the temperature, etc. (Jordan 
1988, Handy 1990). k ranges from 0.98 to 3.8 (Griffiths et 
al. 1979). Tharp (1983) found that k --- 1.8 represents a 
good fit to empirical tensile strengths of various sintered 
porous metals, whereas Jordan (1987) found that k = 
1.1-1.5 for the strengths of calcite-halite and anhydrite- 
halite compressed coaxially in a pseudo-triaxial (at > 02 
= 03) configuration. 

As shown in Fig. 8, comparisons between the Tharp 



258 S. Jl and P. ZHAO 

( i l )  6OO" 

500" 

~ 

2011- 

10(1 

Calcite-Halite 150 MPa 20 °C 
Jordan (1988) 

o . , . , • , - , • 
0.0 0.2 0.4 0,6 0.8 1.o 

Ff 

10 / 
1 • Experiment 

81 ~ Model (s=2) 

t 

o 
o . o  o' .2 o ' . ,  " 0' .6 " 0' .8 " 1 .o  

Ff 

(b) ~ 0 0 '  

6 0 0 -  

¢= 
eL 

O" 400" 
(n 

2 0 0 .  

I 

0 
0.0 

Calcite-Halite 
250 MPa, 20 °C 

Jordan (1987) 

• E " 

/ 

. , • , • , . , • 

0.2 0.4 0.6 0.8 1.0 
Ff 

E 
.= 
g, 

10- 

8- 

6-  

4- 

2- 

( 

0 
0.0 

• Experiment 

0.2 0.4 0.6 0.8 1.0 
Ff 

(c) 10 6OO 

5OO 

~. 400  
=E 

200- 

100. 
I 

0 
0.0  

Calcite-Halite 
200 MPa, 200 °C 

Jordan (1988) 

0.2 0.4 0.6 0.8 1.0 
Ff 

8 

i' 
4 ¸ 

2' 

• Experiment ( 

0 , , • , • i • i • 
0.0 0.2 0.4 0.6 0.8 1.0 

Ff 

Fig. 5. Results of  experimental investigations on calcite-halite aggregates (So vs Ff, in the left column) compared with the 
model predictions based on s = 2 (in the right column). Data f rom Jordan (1987, 1988). (a) Strengths for a given strain of  
2 0 %  at  a t e m p e r a t u r e  o f  20°C,  a c o n f i n i n g  p r e s s u r e  o f  150 M P a  a n d  a s t r a i n - r a t e  o f  10 -4  s 1. (b)  S t r e n g t h s  fo r  a g i v e n  s t r a i n  
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model and the present model reveal two points: (i) in 
composites consisting of a ductile matrix with an inter- 
mediate to low volume fraction of strong phase, the 
strong phase cannot form a load-carrying framework; 
most of the matrix may deform freely while perturbation 
takes place only in a small area around the inclusions. 
This case cannot be modelled by the Tharp model, which 
is limited to rocks with Fe - 0.75; and (ii) although the 
strengthening effect predicted by the Tharp model is 
very close to that predicted by the present model for 

composites with Ff between 0.75 and 1.00, the value ofs 
offers more direct information about the shape of the 
strong phase than the value of k. 

Comparison with Duva (1984) model 

Duva (1984) considered theoretically the strengthen- 
ing effect of rigid (undeformable) spherical inclusions on 
a power-law viscous matrix (strength contrast ~ - 10). 
The inclusions have to be large enough that their inter- 
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Fig. 6. Results of experimental investigations on (a) Fe -Ag aggre- 
gates (S~ vs Ft) compared with the model predictions based on s = 1 
(b). Data from Le Hazif (1978). Strengths for a given strain of 10% at 

25°C, confining pressure 0.1 MPa and strain-rate 7 x 10 -5 s -~. 

action with the matrix can be characterized by contin- 
uum plasticity (Chen & Argon 1979, Fleck et al. 1989)• 
That is, they must be at least several microns in size 
rather than those, like fine precipitates, small enough to 
interact with single dislocations. Duva's model leads to a 
prediction for the overall flow stress (So) of a composite 
material in pure-shear with a dilute distribution (i.e. Ff 
< 0.3) of rigid spherical particles (see Duva (1984) for 
details): 

Sc - Sm 
(1  - F0 °48' (20) 

where Sm is the flow stress for the matrix without rigid 
inclusions, and F,- is the volume fraction of the rigid 
particles. 

We compared the strengthening effect predicted by 
the Duva model with that predicted by our model. ~ = 10 
and s = 1 were used in our modelling; this is consistent 
with Duva's model (i.e. the inclusions are rigid spherical 
particles). As shown in Fig. 9, the values predicted here 
are only about 3% lower than the values derived by the 
Duva model. 

Comparison with model of Tullis et al. (1991) 

A finite-element modelling study allowed Tullis et al. 

(1991) to propose that the flow law for a two-phase 
composite can be approximated by a power flow law in 

( b )  3.0- 

2.5- 

2 . 0 -  
E 

o 1 . 5 -  

1.01 

0.5" 

Tu l l i s  e t  al .  (1991) 

• T h i s  s t u d y  (s=l) 

• S h e l t o n  a n d  T u n i s  (1981) r - ~  
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Ff 
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Fig. 7. Flow strengths of the clinopyroxene-plagioclase aggregate as a 
function of pyroxene volume fraction at (a) 800°C and (b) 900°C, and a 
strain-rate of 10 6 s--i, predicted by the model of Tullis et al. (1991), 
compared with those predicted by the fiber-loading model (this study). 
Flow strength of diabase (64% cpx, 36% pl) calculated from Shelton & 

Tullis (1981) is indicated by a dot. 

the same form as those for the end-member com- 
ponents: 

~= Ao~ exp (--~T) , (21) 

where k is the strain-rate, cr is the differential flow stress, 
n, Q and A represent the power-law exponent, acti- 
vation enthaipy and pre-exponential factor, respec- 
tively, R is the gas constant, and T is absolute 
temperature. 

Tuilis et al. (1991) assumed that the log of the compo- 

10 I S=I 
j .......... ,=21 Thisst,,dy J /  

-~ ~ . . . . f  ...... 5 /  

-6 - - - -  k=1.2 
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Fig. 8. A comparison of the fiber-loading model (this study) and the 
Tharp model. 
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Fig. 9. A c o m p a r i s o n  of  the  f i be r - l oad ing  m o d e l  ( this  s tudy)  a n d  the  
D u v a  m o d e l .  

site stress exponent falls between the logs of the end- 
member stress exponents in proportion to the volume 
fraction of the end-members in the composite, that is, 
log n c = Ff log nf + Fm log nm, and obtained 
the composite flow law parameters no, Qc and Ac from 
the following three equations: 

nc = l O ( 6 1 ° g n i + I : m l ° g n ' )  (22) 

Qc = Qm(nc - nf) -- Qf(n~ - rim) (23) 
n m - -  # i f  

A~ = 10 [(n,-n,)l°ga.,(n,-nm)l°gA,]/(nr~-n,),  (24) 

where the subscripts c, f and m stand for the composite, 
the strong phase and the weak phase, respectively, and F 
represents volume fraction. Comparison between the 
values of SflSm predicted by the model of Tullis et al. 

(1991) and those by the present model for 
clinopyroxene-plagioclase aggregate as a function of 
pyroxene volume fraction at 800 and 900°C and 10 -6 s-l 
are given in Figs. 7(a) & (b). Some difference exists 
between the results of these two models, but that by the 
present model seems to match better with the experi- 
mental result of Shelton & Tullis (1981) on diabase (64% 
cpx, 36% pl). 

In summary. (i) There have been a number of 
attempts to estimate two-phase composite strengths 
(Tharp 1983, Jordan 1988, Handy 1990, Tullis et al. 
1991). Unlike the above studies, the present study has 
attempted to obtain an approximate analytical solution 
for composite strength as a function of the constituent 
volume fraction, the strength contrast between the two 
pure phases, and the aspect ratio of the hard phase. (ii) 
The proposed model can be applied to predict the 
strength of two-phase composites with Ff ranging from 0 
to 1, whereas the Tharp model is restricted to compo- 
sites with Fr >0.75, and Duva model to F¢ <0.3. 

(1) The model is based on the assumption that uni- 
formly distributed short fibers are embedded in a ductile 
matrix. However, in tectonites, particularly rocks that 
have experienced low strain, the elongate rigid grains 
are not perfectly aligned parallel to the extensional 
direction. Therefore, the predicted values should be 
viewed as an upper limit to the bulk composite strength. 
The divergence of the predicted value from the 
measured value should diminish with decreasing aspect 
ratio of the hard phase. 

(2) In the model, it is assumed that the fiber-matrix 
interfacial strength was high enough to resist debonding 
and slipping. Under low confining pressure, however, 
voids or cracks may nucleate along grain boundaries 
between the strong and weak phases, resulting in a 
reduction of the bulk flow strength of the composite 
(Nutt & Needleman 1987, Fleck et al. 1989). Therefore, 
the predicted flow strength should be compared with 
those values measured at high confining pressure. If all 
the interfaces between the fiber and matrix can slip 
freely, the matrix of the composite deforms as does 
unreinforced matrix, and therefore Sc = Sm (McLean 
1972). 

(3) The strength contrast between two phases also 
affects composite strength. In contrast to high strength 
matrix, low strength matrix has stronger ductility and is 
able to accommodate a large stress concentration, with- 
out the nucleation of cracks, in the vicinity of matrix- 
fiber interfaces (Shang etal .  1988, Wu & Lavernia 1992). 

(4) The application of analytical elastic solutions to 
plastic flow was based on Poech's approximation that 
actual composite material which is elastically and 
plastically deformed to a certain point can be replaced 
by an elastic model material reaching the same point of 
stress and strain (Poech 1992). In spite of the fact that 
the agreement between the model and the experiments 
is satisfactory for two-phase aggregates consisting of 
anhydrite-halite, calcite-halite, Fe-Ag and clino- 
pyroxene-plagioclase (Figs. 4-7), further work is 
needed on common silicate rocks. 

As a by-product, it should be pointed out that the 
differential flow stress estimated from microstructural 
piezometers (dynamically recrystallized grain size, sub- 
grain size and dislocation density) (e.g. Twiss 1977, 
Derby 199l) in the soft phase matrix (e.g. Hacker et al. 

1992) cannot be considered to be the bulk flow stress of 
two-phase composite rocks. This is because the distri- 
bution of stresses and strains in the two-phase compo- 
sites is not homogeneous: the harder phase carries a 
comparatively greater stress, while the softer phase 
tends to take the greater part of the strain. 

CONCLUDING REMARKS 

DISCUSSION 

There are four cautions in using the model developed 
in this paper to predict composite strength. 

(1) The simple model presented in this paper allows 
prediction of the flow strength of two-phase rocks as a 
function of the component volume fraction, the aspect 
ratio of the strong phase, and the strength contrast 
between the two phases. The agreement with experi- 
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m e n t s  is s a t i s f ac to ry  fo r  t w o - p h a s e  a g g r e g a t e s  cons i s t ing  

o f  a n h y d r i t e - h a l i t e ,  c a l c i t e - h a l i t e ,  F e - A g  and  

c l i n o p y r o x e n e - p l a g i o c l a s e .  T h u s  if o n e  k n o w s  the  

s t r eng th  o f  q u a r t z ,  f e ld spa r ,  a m p h i b o l e ,  p y r o x e n e  and  

o l iv ine  m o n o m i n e r a l i c  a g g r e g a t e s  and  the i r  a v e r a g e  

aspec t  r a t io ,  o n e  can  ca l cu l a t e ,  to  a first a p p r o x i m a t i o n ,  

s t r e n g t h s  for  la rge  p o r t i o n s  o f  t he  l o w e r  c rus t  and  u p p e r  

m a n t l e .  

(2) T h e  m o d e l  m a y  be used  to  a c c o u n t  fo r  t he  f low 

s t r eng th  o f  c o m p o s i t e s  c o n t a i n i n g  any  v o l u m e  f r ac t ion  

of  s t r o n g  phase .  A l t h o u g h  the  T h a r p  m o d e l  and  the  

D u v a  m o d e l  can  p r ed i c t  t he  s t r eng th  o f  c o m p o s i t e s ,  t he  

T h a r p  m o d e l  is r e s t r i c t e d  to  rocks  wi th  a h igh  v o l u m e  

f r ac t ion  o f  t he  s t r o n g  p h a s e  (Ff > 7 5 % )  and  the  D u v a  

m o d e l  is l im i t ed  to Ff < 3 0 % .  T h e  e a r l i e r  m o d e l s  d id  n o t  

t a k e  in to  c o n s i d e r a t i o n  the  e f fec t  o f  s t r o n g  p h a s e  aspec t -  

r a t io  on  the  s t r eng th  of  c o m p o s i t e s .  

(3) T h e  m o d e l  is t h o u g h t  to be  va l id  fo r  t w o - p h a s e  

rocks  wi th  r e l a t i ve ly  c o a r s e  crys ta ls  o f  t h e  s t r o n g  p h a s e  

( >  10/~m).  F o r  rocks  wi th  a f i n e - g r a i n e d  s t r o n g  p h a s e ,  

the  d i s l o c a t i o n - r e l a t e d  s t r e n g t h e n i n g  e f fec t  ( K e l l e y  

1973, T a y a  & A r s e n a u l t  1989) m a y  be  subs t an t i a l ,  and  

thus  b o t h  the  f i b e r - l o a d i n g  e f fec t  and  the  d i s loca t ion -  

r e l a t e d  s t r e n g t h e n i n g  e f fec t  s h o u l d  be  t a k e n  in to  

a c c o u n t  in p r e d i c t i n g  the  f low s t ress  o f  c o m p o s i t e  rocks .  

Acknowledgements--This study was supported by grants from the 
NSERC of Canada, FCAR of Qudbcc and Universit6 de Montrdal to 
S. Ji. We thank Drs J. Tullis, W. Trzcienski and J. Martigno[e for 
helpful discussion of an early version of this manuscript, and Dr T. M. 
Tharp and an anonymous referee for constructively reviewing the 
manuscript. 

REFERENCES 

Arsenault, R. J. 1991. Strengthening of metal matrix composites due 
to dislocation generation through CTE mismatch. In: Metal Matrix 
Composites: Mechanisms and Properties (edited by Everett, R. K. & 
Arsenault, R. J.). ARC Press, 79-10(I. 

Arsenault, R. J. & Shi, N. 1986. Dislocation generation due to 
differences between the coefficients of thermal expansion. Muter. 
Sci. Engng 81, 175-187. 

Brodic, K. H. & Ruttcr, 12. H. 1985. On the relationship between 
dcformation and metamorphism, with special reference to the 
behavior of basic rocks. In: Metamorphic Reactions: Kinetics, Tex- 
tares" attd Deformation (cdited by Thompson, A. B. & RuNe, D. 
C.). Springer, New York, 138-179. 

Carter, N. L. & Tscnn, M. C. 1987. Flow properties of continental 
lithosphere. Tectonophysies 136, 27-63. 

(;hen, 1. W. & Argon, A. S. 1979. Steady state power law creep in 
hcterogcncous alloys with coarsc microstructures. Acta metall. 27, 
785-791. 

Cox, H. L. 1952. The elasticity and strength of paper and other fibrous 
materials. Br. J. appl. Phys. 3, 72-79. 

l)crby, B. 1991. Thc depcndance of grain size on strcss during dynamic 
recrystallization. Acta metall. Mater. 39, 955-962. 

I)unand, D. & Mortcnsen, A. 1991. Dislocation emission at fibers--I. 
Theory of longitudinal punching by thermal stresses. Acta metall. 
Mater. 39. 14(t5-1416. 

Duva, J. M. 1984. A self-consistent analysis of the stiffening effect of 
rigid inclusions on a power-law material. J. Engng Mater. Technol. 
106,317-321. 

Fleck, N. A., Hutchinson, J. W. & Fvergaard, V. 1989. Softening by 
void nucleation and growth in tension and shear. J. Mech. Phys. 
Solids 37, 515-5411. 

Griffiths, T. J.. Davies, R. & Bassett, M. B. 1979. Analytical study of 
effects of porc gcomctry on tensile strength of porous materials. 
Powder metall. 22, 119-123. 

Hacker, B. R., Yin. A., ('hristic. 1. M. & Davis, G. A. 1992. Stress 

magnitude, strain rate, and rheology of extended middle continental 
crust inferred from quartz grain sizes in the Whipple Mountains, 
California. Tectonics II ,  36--46. 

Handy, M. R. 1990. The solid-state flow of polymineralic rocks. J. 
geophys. Res. 95, 8647-8661. 

Hirth, G. & Tullis, J. 1991. The effect of porosity on the strength of 
quartz aggregates experimentally deformed in the dislocation creep 
regime. Tectonophysics 200, 97-110. 

Ingrin, J., Doukhan, N. & Doukhan, J. C. 1991. High-temperature 
deformation of diopside single crystal, 2. Transmission electron 
microscopy investigation of the defect microstructures. J. geophys. 
Res. 96, 14,287-14,297. 

Jaeger, J. C. & Cook, N. G. W. 1979. Fundamentals of  Rock 
Mechanics" (3rd edn). Chapman and Hall, London. 

Ji, S. & Zhao, P. 1993. Location of tensile fracture within rigid-brittle 
inclusions in ductilly flowing matrix. Tectonophysics 220, 23-31. 

Jordan, P. 1987. The deformational behaviour of bimineralic 
limestone-halite aggregates. Tectonophysics 135, 185-197. 

Jordan, P. 1988. The rheology of potymineralic rocks--an approach. 
Geol. Rdsch. 77,285-294. 

Kelley, P. M. 1973. The quantitative relationship between microstruc- 
ture and properties in two-phase alloys. Int. metall. Rev. 18, 31-36. 

Kelly, A. & Macmillan, N. H. 1986. Strong Solids. Oxford Science 
Publications, Oxford. 

Kim, J. & Chou, T.-W. 1987. Creep analysis of ceramic matrix 
composites. In: Proceedings of  the American Societv for Compo- 
sites. Technomic Publishing Co,, 3(13-309. 

Kirby, S. H. 1980. Tectonic stresses in the lithosphere: Constraints 
provided by experimental deformation of rocks. J. geophys. Res. 85, 
6353-6363. 

Kirby, S. H. & McCormick, J. W. 1984. Inelastic properties of rocks 
and minerals: strength and theology. In: Handbook of Physical 
Properties" of  Rocks, Volume 3 (edited by Carmichael R. S.). CRC 
Press, Boca Raton, Florida. 

Le Hazif, R. 1978. D6formation plastique du systeme biphase fer- 
argent de composition equivolumique. Acta metall. 26,247-257. 

Lloyd, G. E., Ferguson, C. C. & Reading, K. 1982. A stress-transfer 
model for the development of extension fracture boudinagc. J. 
Struct. Geol. 4, 355-372. 

Masuda, T. & Kuriyama, M. 1988. Successive ~'mid-point" fracturing 
during microboudinage: an estimate of the stress-strain relation 
during a natural deformation. Tectonophysics 147, 171-177. 

Nardone, V. C. & Prewo, K. M. 1986. On the strength of discontinu- 
ous silicon carbide reinforced aluminum composites. Scr. metall. 20, 
43-48. 

Nutt, S. R. & Needleman, A. 1987. Void nuclcation at fiber ends in 
AI-SiC composites. Scr. metall. 21,705-710. 

McLean, D. 1972. Viscous flow of aligned composites. J. Mater. Sci. 7, 
98-1 (14. 

Obert, J. & Duvall, W. I. 1967. Rock Mechanics and the Design of 
Structures in Rock. John Wiley & Sons, London. 

Orowan, 12. 1948. Symposium on Internal Stresses m Metals and 
Alloys, London. 

Pachalis, J. R. & Chou, T.-W. 1992. Modeling of creep of misaligned 
short-fiber reinforced ceramic composites. J. appl. Mech. 59, 27-32. 

Paterson, M. S. 1978. Experimental Rock Def?)rmation--The Brittle 
Field. Springer, New York. 

Poech, M. H. 1992. Deformation of two-phase materials: application 
of analytical elastic solutions to plasticity. Scr. metall. Mater. 27, 
1027-1031. 

Poirier, J. P. 1985. Creep of Crystals'. Cambridge University Press, 
Cambridge. 

Price, R. H. 1982. Effects of anhydritc and pressure on the mechanical 
behaviour of synthetic rocksalt. Geophys. Res. Lett. 9, 1029-1032. 

Shang, J. K., Yu, W. & Richie, R. O. 1988. Role of silicon carbide 
particles in fatigue crack growth in SiC-particular-reinforced alumi- 
num alloy composites. Mater. Sci. Engng 102A, 181-192. 

Shelton, G. L. & Tullis, J. 1981. Experimental flow laws for crustal 
rocks. Eos 62,396. 

Taya, M. & Arsenault, R. J. 1987. A comparison between a shear lag 
type model and an 12shelby type model in predicting the mechanical 
properties of a short fiber composite. Scr. metall. 21,349-354. 

Taya, M. & Arsenault, R. J. 1989. Metal Matrix Composites. Perga- 
mon Press, Oxford. 

Tharp, T. M. 1983. Analogies between the high-tcmperature defor- 
mation of polyphase rocks and the mechanical behavior of porous 
powder metal. Tectonophysics 96, TI-11. 

Tullis, T. 12., Horowitz, F. G. & Tullis, J. 199 I. Flow laws of polyphase 
aggregates from end-member flow laws. J. geophys. Res. 96, 8081- 
8096. 



262 S. J l  a n d  P. ZnAO 

Twiss, R. J. 1977. Theory and applicability of a recrystallized grain size 
paleopiezometer. Pure & Appl. Geophys. 115,227-244. 

Tyson, W. R. & Davies, G. J. 1965. A photoelastic study of the shear 
stresses associated with the transfer of stress during fiber reinforce- 
ment. Br. J. appl. Phys. 16, 199-205. 

Wu, Y. & Lavernia, E. J. 1992. Strengthening behavior of particulate 
reinforced MMCs. Scr. metall. Mater. 27, 173-178. 

Zhao, P. & Ji, S. 1992. Comment on "Strengthening Behavior of 
Particulate Reinforced MMCs" by Y. Wu and E. J. Lavernia, and 
"On the Strength of Discontinuous Silicon Carbide Reinforced 
Aluminum Composites" by V. C. Nardone and K. M. Prewo. Scr. 
metall. Mater. 27, 1443. 


